f07 — Linear Equations (LAPACK) f07bhc

NAG C Library Function Document
nag_dgbrfs (f07bhc)

1 Purpose

nag_dgbrfs (f07bhc) returns error bounds for the solution of a real band system of linear equations with
multiple right-hand sides, AX = B or ATX=B It improves the solution by iterative refinement, in order
to reduce the backward error as much as possible.

2 Specification

void nag_dgbrfs (Nag_OrderType order, Nag_TransType trans, Integer n, Integer kl,
Integer ku, Integer nrhs, const double ab[], Integer pdab, const double afb[],
Integer pdafb, const Integer ipiv[], const double b[], Integer pdb, double x[],
Integer pdx, double ferr[], double berr[], NagError *fail)

3 Description

nag_dgbrfs (f07bhc) returns the backward errors and estimated bounds on the forward errors for the

solution of a real band system of linear equations with multiple right-hand sides AX = B or ATX =B
The function handles each right-hand side vector (stored as a column of the matrix B) independently, so
we describe the function of nag_dgbrfs (f07bhc) in terms of a single right-hand side b and solution x.

Given a computed solution z, the function computes the component-wise backward error (3. This is the
size of the smallest relative perturbation in each element of A and b such that x is the exact solution of a
perturbed system

(A+6A) = b+ 6b
|6a;j| < Bla;;| and |6b;| < B[by].

Then the function estimates a bound for the component-wise forward error in the computed solution,
defined by:

max |x; — Z;|/ max |z;|
1 1

where z is the true solution.

For details of the method, see the f07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: trans — Nag TransType Input

On entry: indicates the form of the linear equations for which X is the computed solution as
follows:

[NP3645/7] f07bhe.1



f07bhc NAG C Library Manual

if trans = Nag NoTrans, then the linear equations are of the form AX = B.

if trans = Nag Trans or Nag_ConjTrans, then the linear equations are of the form
ATX =B.

Constraint: trans = Nag _NoTrans, Nag_Trans or Nag_ConjTrans.

3: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

4: kl — Integer Input
On entry: k;, the number of sub-diagonals within the band of A.

Constraint: Kkl > 0.

5: ku — Integer Input
On entry: k,, the number of super-diagonals within the band of A.
Constraint: Ku > 0.

6: nrhs — Integer Input
On entry: r, the number of right-hand sides.

Constraint: nrhs > 0.

7: ab[dim| — const double Input
Note: the dimension, dim, of the array ab must be at least max(1, pdab x n).

On entry: the original n by n band matrix A as supplied to nag_dgbtrf (f07bdc) but with reduced
requirements since the matrix is not factorized. This is stored as a notional two-dimensional array

with row elements or column elements stored contiguously. The storage of elements a;;, for
i=1,...,n and j=max(l,i—k),...,min(n,i+k,), depends on the order parameter as
follows:
if order = Nag_ColMajor, q;; is stored as ab[(j — 1) x pdab + ku + 7 — jl;
if order = Nag_RowMajor, q,; is stored as ab[(i — 1) x pdab + kIl + j —1].
8: pdab — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array ab.

Constraint: pdab > kl + ku + 1.

9: afb[dim] — const double Input
Note: the dimension, dim, of the array afb must be at least max(1, pdafb x n).

On entry: the LU factorization of A, as returned by nag_dgbtrf (f07bdc).

10:  pdafb — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array afb.

Constraint: pdafb > 2 x kl + ku + 1.

11:  ipiv|dim]| — const Integer Input

Note: the dimension, dim, of the array ipiv must be at least max(1, n).

f07bhe.2 [NP3645/7]



07 -

Linear Equations (LAPACK) f07bhc

On entry: the pivot indices, as returned by nag_dgbtrf (f07bdc).

12:  b[dim] — const double Input
Note: the dimension, dim, of the array b must be at least max(1,pdb x nrhs) when
order = Nag_ColMajor and at least max(1, pdb x n) when order = Nag RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix B is stored in b[(j — 1) x pdb + 4 — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix B is stored in b[(¢ — 1) x pdb + j — 1].
On entry: the n by r right-hand side matrix B.

13:  pdb — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array b.

Constraints:
if order = Nag_ColMajor, pdb > max(1,n);
if order = Nag_RowMajor, pdb > max(1, nrhs).

14:  x[dim] — double Input/Output
Note: the dimension, dim, of the array x must be at least max(1,pdx x nrhs) when
order = Nag_ColMajor and at least max(1, pdx x n) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (%, j)th element of the matrix X is stored in x[(j — 1) x pdx + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix X is stored in x[(¢ — 1) x pdx + j — 1].
On entry: the n by r solution matrix X, as returned by nag_dgbtrs (f07bec).

On exit: the improved solution matrix X.

15:  pdx — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array x.

Constraints:
if order = Nag_ColMajor, pdx > max(1,n);
if order = Nag RowMajor, pdx > max(1, nrhs).

16:  ferr[dim] — double Output
Note: the dimension, dim, of the array ferr must be at least max(1, nrhs).

On exit: ferr[j — 1] contains an estimated error bound for the jth solution vector, that is, the jth
column of X, for j=1,2,...,r .

17:  berr[dim| — double Output
Note: the dimension, dim, of the array berr must be at least max(1, nrhs).

On exit: berr[j — 1] contains the component-wise backward error bound [ for the jth solution
vector, that is, the jth column of X, for j=1,2,...,r.

18:  fail — NagError * Output
The NAG error parameter (see the Essential Introduction).

6  Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

[NP3645/7] f07bhe.3



f07bhc NAG C Library Manual

On entry, kl = (value).
Constraint: kI > 0.

On entry, ku = (value).
Constraint: ku > 0.

On entry, nrhs = (value).
Constraint: nrhs > 0.

On entry, pdab = (value).
Constraint: pdab > 0.

On entry, pdafb = (value).
Constraint: pdafb > 0.

On entry, pdb = (value).
Constraint: pdb > 0.

On entry, pdx = (value).
Constraint: pdx > 0.
NE_INT_2

On entry, pdb = (value), n = (value).
Constraint: pdb > max(1,n).

On entry, pdb = (value), nrhs = (value).
Constraint: pdb > max(1, nrhs).

On entry, pdx = (value), n = (value).
Constraint: pdx > max(1,n).

On entry, pdx = (value), nrhs = (value).
Constraint: pdx > max(1, nrhs).

NE_INT_3

On entry, pdab = (value), kl = (value), ku = (value).
Constraint: pdab > kl + ku + 1.

On entry, pdafb = (value), kl = (value), ku = (value).
Constraint: pdafb > 2 x kl + ku + 1.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7  Accuracy

The bounds returned in ferr are not rigorous, because they are estimated, not computed exactly; but in
practice they almost always overestimate the actual error.

8 Further Comments

For each right-hand side, computation of the backward error involves a minimum of 4n(k; + k,) floating-
point operations. Each step of iterative refinement involves an additional 2n(4k; + 3k,) operations. This

f07bhe.4 [NP3645/7]



f07 — Linear Equations (LAPACK) f07bhc

assumes n > k; and n > k,. At most 5 steps of iterative refinement are performed, but usually only 1 or
2 steps are required.

Estimating the forward error involves solving a number of systems of linear equations of the form Az =b

or ATz = b; the number is usually 4 or 5 and never more than 11. Each solution involves approximately
2n(2k; + k,) operations.

The complex analogue of this function is nag_zgbrfs (f07bvc).

9 Example

To solve the system of equations AX = B using iterative refinement and to compute the forward and
backward error bounds, where

—-0.23 254 -3.66 0.00 442 -36.01

A= —698 246 -2.73 -2.13 and B — 2713 -=31.67
0.00 256 246 4.07 —-6.14 -—1.16

0.00 0.00 —4.78 —-3.82 10.50 —25.82

Here A is nonsymmetric and is treated as a band matrix, which must first be factorized by nag dgbtrf

(f07bdc).

9.1 Program Text
/* nag_dgbrfs (f07bhc) Example Program.

* Copyright 2001 Numerical Algorithms Group.

* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)
{
/* Scalars */
Integer i, ipiv_len, j, k1, ku, n, nrhs, pdab, pdafb, pdb, pdx;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;

/* Arrays */
double *ab=0, *afb=0, *b=0, #*berr=0, *xferr=0, *x=0;
Integer *ipiv=0;

#ifdef NAG_COLUMN_MAJOR
#define AB(I,J) abl(J-1)*pdab + ku + I - J]
#define AFB(I,J) afb[(J-1)*pdafb + k1 + ku + I - J]
#define B(I,J) b[(J-1)*pdb + I - 1]
#define X(I,J) x[(J-1)*pdx + I - 1]

order = Nag_ColMajor;
#else
#define AB(I,J) ab[(I-1)*pdab + k1 + J - I]
#define AFB(I,J) afb[(I-1)*pdafb + k1 + J - I]
#define B(I,J) b[(I-1)*pdb + J - 1]
#define X(I,J) x[(I-1)*pdx + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf ("f07bhc Example Program Results\n\n");

/* Skip heading in data file */

[NP3645/7] f07bhc.5



f07bhc NAG C Library Manual

Vscanf ("%*["\n] ");
Vscanf ("%1d %ld 1d%1d%*[*\n] ", &n, &nrhs, &kl, &ku);
ipiv_len = n;

pdab = kl + ku + 1;
pdafb = 2*kl + ku + 1;
#ifdef NAG_COLUMN_MAJOR

pdb = n;

pdx = n;
#else

pdb = nrhs;

pdx = nrhs;
#endif

/* Allocate memory */

if ( !(ab = NAG_ALLOC((kl+ku+l) * n, double)) ||
(afb = NAG_ALLOC ((2+*kl+ku+l) * n, double)) ||

! (b = NAG_ALLOC(nrhs * n, double)) ||

! (x = NAG_ALLOC(nrhs * n, double)) ||

! (berr = NAG_ALLOC(nrhs, double)) ||

! ( = NAG_ALLOC (nrhs, double)) ||

! (ipiv = NAG_ALLOC(ipiv_len, Integer)) )

[

®

=

=
|

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Set A to zero to avoid referencing unitialized elements */
for (i = 0; 1 < nx(kl+ku+l); ++1i)
ab[i] = 0.0;
/* Read A from data file */
for (i = 1; i <= n; ++i)
{
for (j = MAX(i-k1l,1); j <= MIN(i+ku,n); ++3)
Vscanf ("$1f", &AB(i,j));

Vscanf ("sx["\n] ");
/* Read B from data file x/
for (i = 1; 1 <= n; ++1)

{

for (j = 1; j <= nrhs; ++3j)
Vscanf ("$1f", &B(i,3j));

3
Vscanf ("s*x["\n] ");
/* Copy A to AFB and B to X */
for (i = 1; 1 <= n; ++1)

{
for (j = MAX(i-k1,1); j <= MIN(i+ku,n); ++3j)
AFB(i,3j) = AB(i,3);
}
for (i = 1; i <= n; ++1)
{
for (j = 1; j <= nrhs; ++3j)
X(i,3) = B(i,3);
}

/* Factorize A in the array AFB */
f07bdc(order, n, n, k1, ku, afb, pdafb, ipiv, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO7bdc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Compute solution in the array X */
fO07bec(order, Nag NoTrans, n, kl, ku, nrhs, afb, pdafb, ipiv,
x, pdx, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO07bec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

07bhe.6 [NP3645/7]



f07 — Linear Equations (LAPACK)

/* Improve solution,

/* estimated bounds on the forward errors */

f07bhc(order, Nag NoTrans, n, kl, ku, nrhs,
ipiv, b, pdb, x, pdx, ferr, berr,

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f£07bhc.\n%s\n",
exit_status = 1;
goto END;

}

/* Print solution */

x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag,

"Solution(s)", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04cac.\n%s\n",
exit_status = 1;
goto END;
3

/* Print forward and backward errors */
Vprintf ("\nBackward errors

for (3 =
Vprintf

<= nrhs; ++j)

1; 3
("%11.1le%s", berr[j-1],

j%7==0 2"\n":"
Vprintf ("\nEstimated forward error bounds
for (j = 1; j <= nrhs; ++3j)

Vprintf("s1ll.le%s", ferr[j-11,
Vprintf ("\n") ;

j%7==0 ?"\n":"

END:
if (ab) NAG_FREE (ab);
if (afb) NAG_FREE (afb);
if (b) NAG_FREE (b);
if (x) NAG_FREE(x);
if (berr) NAG_FREE (berr);
if (ferr) NAG_FREE(ferr);
if (ipiv) NAG_FREE (ipiv) ;

return exit_status;

9.2 Program Data

f07bhc Example Program Data
4 2 1 2 :Values of N, NRHS,
-0.23 2.54 -3.606
-6.98 2.46 -2.73 -2.13
2.56 2.46 4.07
-4.78 -3.82 :End of matrix A
4.42 -36.01
27.13 -31.67
-6.14 -1.16
10.50 -25.82 :End of matrix B

9.3 Program Results

f07bhc Example Program Results

Solution(s)

1 2
1 -2.0000 1.0000
2 3.0000 -4.0000
3 1.0000 7.0000
4 -4.0000 -2.0000
Backward errors (machine-dependent)
1.0e-16 8.2e-17
Estimated forward error bounds (machine-dependent)
1.5e-14 1.8e-14

and compute backward errors and

ab, pdab,
&fail);

*/

afb, pdafb,

fail.message) ;

n, nrhs, x, pdx,

fail.message) ;

(machine-dependent)\n") ;

")

(machine-dependent)\n") ;

")

KL and KU

f07bhe

[NP3645/7]

f07bhc.7 (last)



	f07bhc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	trans
	n
	kl
	ku
	nrhs
	ab
	pdab
	afb
	pdafb
	ipiv
	b
	pdb
	x
	pdx
	ferr
	berr
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results


	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities


